Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast.

نویسنده

  • K Struhl
چکیده

pet56, his3, and ded1 are adjacent but unrelated genes located on chromosome XV of the yeast Saccharomyces cerevisiae. his3 and pet56 are transcribed in opposite directions from initiation sites separated by approximately equal to 200 base pairs. Under normal growth conditions, both genes are transcribed at a similar basal level. Deletion analysis of the his3 gene indicates that the upstream promoter element for constitutive expression is defined by a 17-base-pair region that contains 15 thymidine residues in the coding strand. Sequential deletions of the pet56 gene indicate that this same region is required for wild-type transcription levels. Thus, this poly(dA-dT) sequence acts bidirectionally to activate transcription of two unrelated genes. Transcription of the ded1 gene is initiated approximately equal to 300 base pairs downstream from the his3 gene, and it occurs at a 5-fold higher level. This gene contains a 34-base-pair region containing 28 thymidine residues in the coding strand located upstream from the ded1 TATA box. Deletion of this dA-dT stretch significantly reduces transcription below the wild-type level. Thus, for at least three different yeast genes, naturally occurring stretches of poly(dA-dT) serve as upstream promoter elements for constitutive expression. In addition, it appears that longer stretches of poly(dA-dT) are more effective upstream promoter elements. These transcriptional effects may be due to exclusion of nucleosomes from poly(dA-dT) regions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinguishing between mechanisms of eukaryotic transcriptional activation with bacteriophage T7 RNA polymerase.

To distinguish between mechanisms of eukaryotic transcriptional activation, we tested whether yeast upstream promoter elements can stimulate transcription by a heterologous transcription machinery, bacteriophage T7 RNA polymerase. The gal enhancer-like element recognized by GAL4 protein or the ded1 poly(dA-dT) element was placed upstream of the T7 promoter and his3 structural gene, and T7 RNA p...

متن کامل

Molecular mechanisms of transcriptional regulation in yeast.

PERSPECTIVE AND SUMMARY ................................................................ 1051 YEAST PROMOTER ELEMENTS ................................................................ 1052 SPECIFIC DNA-BINDING PROTEINS .......................................................... 1054 TRANSCRIPTIONAL ACTIVATION ............................................................ 1059 REGULATION ..............

متن کامل

Constitutive and inducible Saccharomyces cerevisiae promoters: evidence for two distinct molecular mechanisms.

his3 and pet56 are adjacent Saccharomyces cerevisiae genes that are transcribed in opposite directions from initiation sites that are separated by 200 base pairs. Under normal growth conditions, in which his3 and pet56 are transcribed at similar basal levels, a poly(dA-dT) sequence located between the genes serves as the upstream promoter element for both. In contrast, his3 but not pet56 transc...

متن کامل

Preferential accessibility of the yeast his3 promoter is determined by a general property of the DNA sequence, not by specific elements.

Yeast promoter regions are often more accessible to nuclear proteins than are nonpromoter regions. As assayed by HinfI endonuclease cleavage in living yeast cells, HinfI sites located in the promoters of all seven genes tested were 5- to 20-fold more accessible than sites in adjacent nonpromoter regions. HinfI hypersensitivity within the his3 promoter region is locally determined, since it was ...

متن کامل

Destabilization of nucleosomes by an unusual DNA conformation adopted by poly(dA)poly(dT) tracts in vivo

Poly(dA)´poly(dT) tracts are common and often found upstream of genes in eukaryotes. It has been suggested that poly(dA)´poly(dT) promotes transcription in vivo by affecting nucleosome formation. On the other hand, in vitro studies show that poly(dA)´poly(dT) can be easily incorporated into nucleosomes. Therefore, the roles of these tracts in nucleosome organization in vivo remain to be establi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 82 24  شماره 

صفحات  -

تاریخ انتشار 1985